Linear Combinations


A linear combination of a set of vectors uses the two operations of vector addition and vector scaling. Given a set of vectors, a linear combination of the set involves first scaling the vectors and then taking their sum.

Definition:
If \( \overrightarrow{w} \) is a vector in a vector space \( V \), then \( \overrightarrow{w} \) is said to be a linear combination of the vectors \( \overrightarrow{v_1}, \overrightarrow{v_2}, \dotsc , \overrightarrow{v_r} \) in \( V \) if \( \overrightarrow{w} \) can be expressed in the form

\( w = k_1\overrightarrow{v_1} + k_2\overrightarrow{v_2} + \dotsc + k_r\overrightarrow{v_r}\)

Where \( k_1 , k_2 ,\dotsc, k_r \) are scalars. These scalars ae called the coefficients of the linear combination.

Anton, Howard. Elementary Linear Algebra. W. Ross MacDonald School Resource Services Library, 2016.

Given two vectors \( \color{vred}\overrightarrow{v} \) & \( \color{vblue}\overrightarrow{w} \) a linear combination of them takes the following general form.

\( {\color{vred}a\overrightarrow{v}} + {\color{vblue}b\overrightarrow{w}} = \color{vgreen}\overrightarrow{z} \)
\( {\color{vred} a\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}} + \color{vblue} b\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \color{vgreen} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \)
\( \color{vgreen}\overrightarrow{z} = \begin{bmatrix} {\color{vred}av_1} + {b\color{vblue}w_1} \\ {\color{vred}av_2} + {\color{vblue}bw_2} \\ \vdots \\ {\color{vred}av_n} + {\color{vblue}bw_n} \end{bmatrix} \)

Example:

Consider the four following vectors

\( \overrightarrow{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \overrightarrow{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \overrightarrow{x} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} \quad \overrightarrow{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \)

Vector \( \overrightarrow{x} \) is said to be a linear combination of \( \overrightarrow{v} \) and \( \overrightarrow{w} \) because it can be expressed in the following manner:
\( \overrightarrow{x} = 2\overrightarrow{v} + \frac{1}{2}\overrightarrow{w}\)

Vector \( \overrightarrow{y} \) is not a linear combination of \( \overrightarrow{v} \) and \( \overrightarrow{w} \) because there are no scalars \( k_1 \) and \( k_2 \) such that \( \overrightarrow{y} = k_1\overrightarrow{v} + k_2\overrightarrow{w}\)


The visualization shown to the right shows the linear combination of the two vectors v and w by randomly generated scalars. Every iteration a random pair of scalars a and b are generated. The animation first scales v and w by their respective scalars and then takes their sum.

Each line is a linear combination of v and w.

\( {\color{vred}a\overrightarrow{v}} + {\color{vblue}b\overrightarrow{w}} = \color{vgreen}\overrightarrow{r} \)

\( \color{vred}\overrightarrow{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

\( \color{vblue}\overrightarrow{w} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \)

\( \color{vred}a = \)

\( \color{vblue}b = \)


touch_appTry it Yourself

You can use the interactive tool below to visualize adding two vectors.



...